
FUNCTIONAL PROGRAMMING IN
REACT

工业聚@Ctrip

A WAY TO IMPROVE REACT SKILL
Step 1: Learn some JavaScript
Step 2: Learn some
Step 3: Learn some
Step 4: Learn some
Step 5: Go to step 1

React
Haskell
Category Theory

https://reactjs.org/
https://en.wikibooks.org/wiki/Haskell
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/

YOUR IMPRESSION ABOUT FP
Programming tricks
Programming design patterns
Programming paradigm
Computer Science
Mathematics
Philosophy
Others

FP VS NON-FP
Non-FP: Discover mathematics from programming
FP: Apply mathematics to programming
The best practices in Non-FP follow the principle of FP
Such like avoid global state, Defensive Programming,
comosable and so on
The FP parts of a codebase are always safest parts.

CALCULATION AND EFFECT
The code is all about Calculation and Effect

Calculation is an Effect of Code
Code with not only Calculation Effect means Side Effects
Code with only Calculation Effect means Purity

https://lucifier129.github.io/webppt/img/183-world-annihilation.png

PURE FUNCTION
Works like Math formula
Always return the same result when got the same
arguments
No other effects

const add = (x, y) => x + y
// immutable variable
const person = { firstname: 'Jade', lastname: 'Gu' }
// 'person' is just works like alias
const getFullName = person => `${person.firstname} ${person.lastname}

IMPURE FUNCTION
Programming in an unsafe way

Your code change the Environment irreversibly
The Environment your code depends on become
unexpected

// depends on the memory of the computer
let count = 0
// different result with the same arguments
let getCount = () => Count++
let setCount = n => count = n // n may not be number
// cause side effects in console
let printCount = () => console.log(id)
// cause side effects in DOM
let renderCount = () => document.getElementById('count').innerHTML = count

WHY PURITY MATTERS?
Remove a non-existent element will make your app crash

Side Effects are dangerous
Side Effects are hard to reason about
Side Effects don't scale
Side Effects make thing became more complex than it
should be

THE HIGHER-ORDER FUNCTION
Our best friends in Front-end Development

A function returns another function
A function takes another function as the argument

// map is higher-order function
const map = (list, f) => list.map(f)
// filter is also higher-order function
const filter = f => list => list.filter(f)
// ajax is higher-order function
ajax(url, data, successCallback, errorCallback)
// fs.readFile is higher-order function
fs.readFile('/filename.txt', (error, data) => {})

A LITTLE JAVASCRIPT PROBLEM
No arrays, No object, no dot operator, no for-loop, no
while-loop
How to solve the problem without the data structure?

var numbers = range(1, 10);
numbers = map(numbers, function (n) { return n * n });
numbers = reverse(numbers);
foreach(numbers, console.log);
/* output:
 100
 81
 64
 49
 36
 25
 16
 9
 4
 1
*/

http://lisperator.net/blog/a-little-javascript-problem/

THE POWER OF FUNCTION
Lambda calculus

We can just use Function do all possiable calculus in
computer
All programming language features can be desugered into
Function

https://codesandbox.io/s/xjjpxmvl1z

WHAT IS THE CONSISTENCY OF THE
FOLLOWING?

String
Array
Object
Tree
Promise

MAPABLE AND FUNCTOR
map(string, char => char)
map(array, item => item)
map(object, value => value)
map(tree, node => node)
map(promise, asyncValue => asyncValue)

fmap id = id
fmap (g . f) = fmap g . fmap f

WHAT IS THE CONSISTENCY OF THE
FOLLOWING?

Number
String
Array
Function

ADDITION OF NUMBERS
0 is identity value
+ is associative operation
0 + n = n
n + 0 = n
(0 + 1) + 2 = 0 + (1 + 2)

MULTIPLICATION OF NUMBERS
1 is identity value
* is associative operation
1 * n = n
n * 1 = n
(1 * 2) * 3 = 1 * (2 * 3)

CONCATENATION OF ARRAY
[] is identity value
++ is associative operation

[] ++ [1,2,3] = [1,2,3]
[1,2,3] ++ [] = [1,2,3]
[1,2] ++ [3] ++ [4] = [1,2] ++ ([3] ++ [

CONCATENATION OF STRING
"" is identity value
+ is associative operation

"abc" + "" = "abc"
"" + "abc" = "abc"
"abc" + "xyz" + "123" = "abc" + ("xyz" + "123"

COMPOSITION OF FUNCTIONS
id is identity value
compose is associative operation

id = \x -> x
f . id = f
id . f = f
(f . g) . h = f . (g . h)

MONOID
a monoid is an algebraic structure with a single associative

binary operation and an identity element.

All of the identity value named mempty
All of the associative operation named mappend

class Monoid a where
 mempty :: a
 mappend :: a -> a -> a

SOURCE OF POWER OF REACT
Why React works better than jQuery in complex web app?

jQuery is lack in side effects management
The methods in $.fn mostly perform Side Effects
React splits UI Dev into two parts: JSX && Renderer
JSX can be Pure Function without Side Effects and are
easy to compose.
Renderer(ReactDOM/ReactNative) performs Side Effects
later

FUNCTIONAL SETSTATE
The common question: Why is setState async?

Some people want setState performs side-effects
immediately
setState is optimized by performing batches updates if
possible
setState(updater[, callback]) is higher-order function

// imperative style
this.setState(newState)
this.setState(anotherState)
console.log(this.state)
// functional style
this.setState(state => update(state), () => console.log(this.state))
this.setState(state => update(state), () => console.log(this.state))

https://github.com/facebook/react/issues/11527

HIGHER-ORDER COMPONENT
HOC is the subset of the higher-order function

a higher-order component is a function that takes a
component and returns a new component.

const defaultProps = defaults => InputComponent => {
 const OutputComponent = props => <InputComponent {...defaults} {...props
 return OutputComponent
}
const ComponentWithDefaultProps = defaultProps({ name: 'Jade' })(MyComponent)

https://reactjs.org/docs/higher-order-components.html

RENDER PROPS
Render props is the subset of the higher-order function

A component with a render prop takes a function that
returns a React element and calls it instead of
implementing its own render logic

<Mouse>
 {mouse => (
 <p>The mouse position is {mouse.x}, {mouse.y}</p>
)}
</Mouse>

https://reactjs.org/docs/render-props.html

REACT SUSPENSE
Based on the idea of FP: algebraic-effects

fetch data without async/await
const commentInfoFetcher = createFetcher(
fetchCommentInfo // function that returns a fetch() promise
)
function CommentsInfo({ commentId }) {
const commentInfo = commentInfoFetcher.read(commentId)
return <div>
 Title: {commentInfo.title}
 Description: {commentInfo.description}
</div>
}

https://medium.com/@lmatteis/react-suspense-for-the-layman-caae7f48686f
https://www.eff-lang.org/handlers-tutorial.pdf

ALGEBRAIC-EFFECTS
Rise and Resume

never resume -> Exception effect
resume once -> Promise/Generator/State
resume multiple times

with(handler) {
 const forename = prompt('What is your forename?'
 const surname = prompt ('What is your surname?'
 return([forename, surname].join(' '))
}

ALGEBRAIC-EFFECTS IN JAVASCRIPT
Sebastian proposed two years ago

function otherFunction() {
 console.log(1);
 let a = perform { x: 1, y: 2 };
 console.log(a);
 return a;
 }

 do try {
 let b = otherFunction();
 b + 1;
 } catch effect -> [{ x, y }, continuation] {
 console.log(2);
 let c = continuation(x + y);
 console.log(c);
 c + 1;
 }

https://esdiscuss.org/topic/one-shot-delimited-continuations-with-effect-handlers

ALGEBRAIC-EFFECTS IN JAVASCRIPT
(throw + catch ≈ rise) && (re-run ≈ resume)

throw promise -> catch promise -> promise.then(reRun)

throw observable -> catch observable ->
observable.subscribe(reRun)

const main = operators => {
 let { fetchJSON, interval } = operators;
 let data = fetchJSON("https://api.github.com/repos/zeit/next.js");
 let count = interval(1000 / 60);
 let angle = count % 360;
 let root = document.getElementById("root");
 root.style.transform = `rotate(${angle}deg)`;
 root.innerHTML = data.stargazers_count;
};

withHandler({ interval, fetchJSON })(main);

https://codesandbox.io/s/mz6o0onzzp

TAIL CALL OPTIMIZATION FOR JS
A special case of algebraic-effects

Optimizing tail-resumptions to a regular function call
Tail call optimization demo

const tco = f => {
 let isCalling = false
 return (...args) => {
 if (isCalling) throw args
 while (true) {
 try {
 isCalling = true
 return f(...args)
 } catch(params) {
 if (params instanceof Error) throw params
 args = params
 } finally {
 isCalling = false
 }
 }
 }
}

https://codesandbox.io/s/oo4n38y0y9

UNSAFE RESUMPTION
why did React deprecated componentWill*?

Many React Dev perform side-effects in componentWill*
Re-render component with the same props and state
should be safe
Solution: performs side-effects in componentDid*

REACTIVE REACT
Put react in rxjs

toReactComponent :: observable -> react-component
const App = from("hello rxjs-react!").pipe(
 concatMap(char => of(char).pipe(delay(300))),
 scan((str, char) => str + char, ""),
 toReactComponent(text => {
 return (
 <div>
 <h1>{text}</h1>
 </div>
);
 })
);

https://codesandbox.io/s/rmkwjx0rrq

REACTIVE REACT
Put rxjs in react

reactive :: component -> reactive-component
const App = reactive(() => {
 const hello$ = from('hello rxjs-react!').pipe(
 concatMap(char => of(char).pipe(delay(300))),
 scan((str, char) => str + char, ''),
 map(text => <h1>{text}</h1>)
)
 return <div>{hello$}</div>
})

https://codesandbox.io/s/9o6ym1jrr4

CONCLUSION
FP is awesome in web dev when using it in a right
way(Such like React)
JS is not friendly enough for FP (e.g algebraic-effects)
Learning FP can improve our understanding of
programming

Q & A
关注我的公众号，了解更多前端玩法

